کارایی ادوات نیمه هادی در مصارف مختلف، به چگونگی ساختار آن ها و پارامترهای مختلف الکتریکی وابسته است. در میان افزاره های مختلف نیمه هادی، ترانزیستورهای اثر میدان توجه صنعت الکترونیک را به خود جلب کرده است. کارایی بالای این افزاره ها، موارد استفاده ی آن ها را از نانوتکنولوژی تا ترانزیستورهای قدرت گسترش داده است ]3-1[. در افزاره های قدرت، پارامترهایی از قبیل ولتاژ شکست، مقاومت حالت روشن ، سرعت کلیدزنی و فرکانس کاری، از ویژگی های الکتریکی مهم تر می باشند. بنابراین، برای بهبود کارایی این دسته از افزاره ها می بایست ضمن بررسی عملکرد دقیق هر ساختار، روش های نوینی را ارائه و مورد ارزیابی قرار داد.
در این فصل به بررسی مشخصه ی ترانزیستور اثر میدان پرداخته می شود، تا با درک مفهوم کلی و نحوه ی سازوکار این ترانزیستور ها، بتوان ترانزیستورهای قدرت را مورد ارزیابی قرار داد. در ادامه ی این فصل نیز به کاربردهای افزاره های قدرت و انواع آن ها اشاره شده است.
1-1) مشخصات جریان-ولتاژ ترانزیستور اثر میدان MOSFET
مشخصه ی جریان- ولتاژ ترانزیستور MOS در شکل (1-1) نشان داده شده است. چنانچه ولتاژ مثبت VD بین درین و سورس و ولتاژ VG کمتر از ولتاژ آستانه به گیت اعمال شود، افزاره در حالت انسداد قرار می گیرد. این ولتاژ انسداد MOSFET با شکست بهمنی محدود می شود. با توجه به شکل (1-1)، در ولتاژهای VD پایین، مشخصه ی جریان-ولتاژ شبیه یک خط راست می باشد که به این قسمت، ناحیه ی اهمی ترانزیستور می گویند.
با توجه به شیب خط راست و برای یک ولتاژ گیت معیّن VG، مقاومت حالت روشن بدست می آید. همچنین در این مشخصه، گذر بین ناحیه اهمی و ناحیه سوراخ شدگی ، شبه اشباع نامیده می شود.
همان طور که در شکل مشاهده می شود، این ناحیه به صورت سهمی وار است.
شکل (1-1)- مشخصه جریان-ولتاژ ترانزیستور MOSFET ]4[.
1-1-1) مشخصات کانال ترانزیستور MOSFET
برای بررسی مشخصات ناحیه ی کانال، به گیت ترانزیستور ولتاژی بیشتر از ولتاژ آستانه اعمال می شود تا کانال در آستانه ی وارونگی قرار گیرد. این شرایط در شکل (1-2) نشان داده شده است. بار کانال در حالت وارونگی از رابطه ی زیر بدست می آید:
(1-1)
که در این رابطه، C ox خازن مربوط به اکسید گیت است و VT ولتاژ آستانه ترانزیستور می باشد. باید توجه شود که حامل ها در برقراری جریان در کانال وارونه، نقشی اساسی دارند. با بررسی مقاومت ناحیه ی کانال می توان رابطه ای را برای جریان بدست آورد. مقاومت ناحیه ی کانال در حالت وارونگی از رابطه زیر بدست می آید ]4[:
(1-2)
که در آن، L طول ناحیه کانال ترانزیستور می باشد و W، پهنای آن است. پارامترهایی که به هندسه افزاره مربوط می-شود را می توان به صورت:
(1-3)
نشان داد.
شکل (1-2)- کانال ترانزیستور MOSFET: الف) VD≤VG-VT ب) VD=VG-VT ج) VD≥VG-VT ]4[.
با افزایش جریان، افت ولتاژ V(y) در طول کانال توسعه می یابد. در این شرایط، کانال ترانزیستور نازک تر می شود. همچنین، در طول کانال (y)، بار Q(y) وجود دارد. با در نظر گرفتن بار Q(y)در کانال ترانزیستور می توان مقاومت کانال را در راستای yبدست آورد. چنانچه یک جزء دیفرانسیلی dR از مقاومت کانال ترانزیستور را در نظر بگیریم، با توجه به معادله (1-2) می توان نوشت:
(1-4)
که در این رابطه، Q(y) برابر است با:
(1-5)
در جزء دیفرانسیلی dR، افت ولتاژ از رابطه ی زیر بدست می-آید:
(1-6)
با جایگذاری معادلات (1-4) و (1-5) در معادله ی (1-6)، جریان به صورت رابطه ی زیر می شود:
(1-7)
که در آن، ولتاژ VD بین مرزهای 0=y و L=y از رابطه:
(1-8)
بدست می آید.
با انتگرال گیری از رابطه ی (1-8)، مشخصه ی جریان درین بر حسب ولتاژ گیت برای محدوده ی VD<VG-VT بدست می آید:
(1-9)
این مشخصه، مربوط به قسمت سهمی وار (شبه اشباع) شکل (1-1) است. برای ولتاژهای درین پایین، جریان درین را می-توان به صورت زیر تقریب زد:
(1-10)
این رابطه برای ناحیه ی اهمی معتبر است. گذر از ناحیه ی سوراخ شدگی، با مشتق گیری از رابطه ی (1-9) بدست می-آید ، بعد از آن کانال، برای ولتاژ:
(1-11)
در حالت سوراخ شدگی قرار می گیرد.
برای ولتاژهای درین بالا، با وارد کردن معادله ی (1-11) در معادله ی (1-9)، مشخصات ترانزیستور در ناحیه سوراخ شدگی بدست می آید. در این ناحیه، جریان حتی برای ولتاژهای درین بالا، تقریباً ثابت باقی می ماند:
(1-12)
با توجه به رابطه ی (1-12)، جریان IDsat مستقل از VD است. علّت فیزیکی این پدیده، نفوذ میدان الکتریکی به داخل ناحیه ی P می باشد. بنابراین، وقتی که ولتاژ درین به طور موثری افزایش یابد، طول کانال کوتاه تر می گردد . کوتاه شدن طول کانال موجب افزایش جریان در ولتاژهای بالا می شود.
چنانچه رابطه ی (1-9) با مشخصات افزاره های قدرت واقعی مقایسه شود، می توان دریافت که این رابطه نمی تواند رفتار واقعی افزاره های قدرت را توصیف کند ]5[. در این رابطه، ناحیه ی تخلیه ی ایجاد شده در زیر ناحیه کانال منظور نشده است. بنابراین چنانچه بار فضا در مشخصه ی جریان-ولتاژ لحاظ شود، رابطه ی زیر بدست می آید:
(1-13)
که در این رابطه، CD از رابطه ی زیر بدست می آید:
(1-14)
همچنین VTΔ ولتاژ مورد نیاز برای گسترش ناحیه ی بار فضا به سمت ناحیه ی P و با میزان تزریق NA می باشد که به صورت زیر بیان می گردد :
(1-15)
لازم به ذکر است که مقدار VTΔ تقریباً برابر با 81/0 ولت است. بنابراین می توان جریان درین را با در نظر گرفتن بارفضا بدست آورد تا روابط بدست آمده به مشخصات افزاره های قدرت واقعی نزدیک تر باشند.
بنابراین با محاسبه ی مشخصه ی جریان –ولتاژ، می توان رفتار ترانزیستور را مورد ارزیابی قرار داد. با توجه به این که این رساله به بررسی ترانزیستورهای قدرت اثر میدان می پردازد، می بایست با توجه به کاربردهای افزاره های قدرت، تغییراتی را در ساختار ترانزیستورهای اثر میدان ایجاد کرد تا بتوان مشخصه ی مطلوب را بدست آورد. در ادامه ی فصل به این موضوع پرداخته شده است.
1-2) کاربردهای ادوات قدرت
ادوات قدرت با توجه به کاربردهایشان در طیف گسترده ای از سطوح مختلف قدرت مورد استفاده قرار می گیرند. با توجه به شکل (1-3)، کاربردهای ادوات قدرت در چند گروه تقسیم بندی می شوند. اولین گروه، کاربردهایی است که افزاره نیاز به جریان کم دارد (عموماً کمتر از یک آمپر). این کاربردها، مانند راه اندازهای نمایشگرها، معمولاً نیاز به تعداد بسیار زیادی ترانزیستور دارند که می بایست قابلیت ولتاژ شکست حدود 300 ولت را داشته باشند. ابعاد کوچک ترانزیستورهای با جریان پایین، این اجازه را می دهد تا آن ها را در یک تراشه مجتمع سازی کنیم.
دومین گروه، شامل کاربردهایی است که حوزه ی عملکرد ولتاژ آن ها در مدارهای قدرت، نسبتاً کم است (کمتر از 100 ولت). خودروهای الکترونیکی و منابع قدرت مورد استفاده در صفحه نمایش کامپیوترها و لپ تاپ ها، نمونه هایی از این گروه هستند. لازم به ذکر است، ساختارهای ترانزیستورهای اثر میدان قدرت سیلیسیمی به نحوی است که کارایی قابل توجه ای در این راستا دارند، زیرا مقاومت حالت روشن پایین و سرعت کلیدزنی بالایی را از خود نشان می دهند.
سومین گروه، کاربردهای افزاره ها در مدارات با ولتاژ بالا (بالای 200 ولت) می باشد. از نمونه های این بخش می توان به موتورهای لوازم خانگی و همچنین راه اندازهای وسایل الکتریکی اشاره کرد. از آنجا که مقاومت حالت روشن ترانزیستورهای اثرمیدان قدرت سیلیسیمی متداول بسیار بزرگ است، لذا نمی توان از آن ها در کاربردهایی که در بالا بیان شد استفاده کرد. در نتیجه می بایست از ترانزیستورهای دوقطبی با گیت جدا شده (IGBT) استفاده کرد ]6[. ترانزیستورهای IGBT ترکیبی از ساختار فیزیکی ترانزیستورهای اثرمیدان و ترانزیستورهای دوقطبی می باشند ]7[.
امروزه، بیشتر ترانزیستورهای قدرت در تکنولوژی سیلیسیم روی عایق (SOI) شکل می گیرند ]8-17[. چنانچه این ترانزیستورها در بستری از سیلیسیم شکل گیرند، اثرات نامطلوبی را از خود بر جای می گذارند، که می توان ایجاد ترانزیستور دو قطبی پارازیتی و افزایش خازن بین کانال و زیر لایه و غیره را نام برد ]18-20[. بنابراین برای کنترل این معایب، تکنولوژی SOI معرفی شده که در آن، لایه ای از اکسید مدفون در زیر ناحیه ی فعال ترانزیستور قرار گرفته -است ]21-29[. ساختارهای متعددی در تکنولوژی SOI ارائه شده که به بهبود مشخصات ترانزیستورها منجر گردیده است. در فصل های آینده به تعدادی از این ساختارها پرداخته می شود.
شکل (1-3)- محدوده ی کاربردهای ادوات قدرت.
1-3) انواع ترانزیستورهای قدرت
نمای کلی ترانزیستور MOSFET در شکل (1-4) نشان داده شده است. این ساختار، ولتاژ درین-سورس کوچکی را می تواند تحمّل کند. بنابراین، برای کاربردهای قدرت می بایست این ساختار را اصلاح نمود. در شکل (1-5)، ساختاری را با نام ترانزیستور اثر میدان نفوذی (DMOS) مشاهده می کنید که برای ولتاژهای 10 ولت و بالاتر کارایی دارد ]30-32[. در این ترانزیستور در مقابل درین ترانزیستور، ناحیه ای از نیمه هادی نوع n- ایجاد شده است که موجب انسداد ولتاژ می گردد. ترانزیستورهای DMOS افقی (LDMOS) در مدارات مجتمع قدرت مورد استفاده قرار می گیرند ]33[. امّا این افزاره ها دارای مشکلاتی از قبیل ظرفیت پایین جریان دهی می باشند، زیرا ناحیه n- قسمت بزرگی از مساحت نیمه هادی را در برگرفته است.
در سال 1985، ترانزیستور DMOS که به صورت عمودی شکل گرفته بود، ارائه شد ]34[. از میان تمامی ساختارهای موجود ترانزیستورهای قدرت، ساختار D-MOSFET اولین ترانزیستور قدرتی بود که به صورت تجاری مورد استفاده قرار گرفت. ساختار ترانزیستور D-MOS عمودی نوع n همان طور که در شکل (1-6) الف نشان داده شده است، با استفاده از اختلاف در گسترش افقی پیوندها در زیر الکترود گیت ایجاد می شود. این افزاره ها، ولتاژ مثبتی که به درین ترانزیستور اعمال می شود را متحمّل می شوند. همچنین، مقدار ولتاژ اعمال شده با میزان چگالی ناخالصی و ضخامت ناحیه ی رانشی نوع n، ارتباط دارد. لازم به ذکر است که ترانزیستورهای اثر میدانی که در کاربردهای قدرت با ولتاژ پایین به کار گرفته می شوند، مقاومت حالت روشن کوچکی دارند و مقاومت ناحیه ی رانشی سریعاً با افزایش ولتاژ انسداد زیاد می شود. این شرایط موجب کاهش کارایی ترانزیستور D-MOSFET به ولتاژهای کمتر از 200 ولت می شود.
ساختار دیگری که در کاربردهای قدرت استفاده می شود، ترانزیستور U-MOSFET است که به صورت تجاری در سال 1990 عرضه شد. همان طور که در شکل (1-6) ب مشاهده می شود، ساختار گیت این ترانزیستور به صورت جاسازی شده است ]35-37[. نحوه ی عملکرد این ساختار به طور گسترده در فصل های آتی بررسی شده است.
شکل (1-4)- نمایی از ترانزیستور MOSFET.
شکل (1-5)- ساختار ترانزیستور DMOS افقی.
(الف) (ب)
شکل (1-6)- الف) ترانزیستور D-MOS عمودی، ب) ترانزیستور U-MOS.
بنابراین با توجه به کاربردهای ترانزیستورهای قدرت و انواع آن ها، می بایست مشخصات این دسته از افزاره ها را بهبود بخشید.
در فصل دوم این رساله، به بررسی ولتاژ شکست و مقاومت حالت روشن پرداخته شده است. ضمن بیان دو روش کلی برای یکنواخت تر کردن توزیع میدان الکتریکی، به محاسبه ی ولتاژ شکست و مقاومت حالت روشن می پردازیم. همچنین در انتهای این فصل تعدادی از روش هایی که گذشته موجب بهبود مشخصات ترانزیستورهای LDMOS گردیده، بررسی شده است.
فصل سوم، به ارائه ی ساختارهای نوین ترانزیستور LDMOS که در تکنولوژی سیلیسیم روی عایق (SOI) شکل گرفته اند، می پردازد. در ساختار نوین اول، چاه اکسیدی در ناحیه ی رانشی ترانزیستور در نظر گرفته شده و یک ناحیه ی سیلیسیمی نوع P در این چاه، جاسازی شده است. این ساختار، ولتاژ شکست و مقاومت حالت روشن را بهبود می بخشد. در ساختار دوم، بارهای مثبت و منفی در فصل مشترک لایه ی اکسید مدفون و ناحیه ی رانشی در نظر گرفته شده است. بارهای ایجاد شده، افزایش میدان الکتریکی عمودی را در لایه ی اکسید مدفون در پی داشته و ولتاژ شکست را افزایش می دهند. در آخرین ساختار، سه عایق اکسید سیلیسیم در ترانزیستور LDMOS تعبیه شده اند، به گونه ای که ساختاری شبیه حرف U انگلیسی ایجاد کرده اند. نتایج بدست آمده از شبیه سازی این ساختار نوین با نرم افزار ATLAS، بهبود مشخصات این ترانزیستور را نشان می دهد.
در فصل چهارم این رساله، مدلی جدید برای میدان سطحی و ولتاژ شکست ساختار RESURF ارائه شده است. اساس این مدلسازی بر حل معادله ی پواسون استوار است.
در فصل پنجم، اثر بدنه ی شناور که از مشکلات تکنولوژی SOI می باشد، بررسی شده است. برای حل این مشکل نیز ساختار جدیدی ارائه شده که هدف اصلی آن کنترل حفره هایی است که طی پدیده ی یونیزاسیون برخوردی در ناحیه ی کانال ترانزیستور، ایجاد شده اند. بنابراین، می توان با کاهش اثرات نامطلوب بدنه ی شناور، کارایی ترانزیستور LDMOS را بهبود بخشید.
فرم در حال بارگذاری ...