فولادهای رسوب سخت شونده، گروهی از فولادهای فوق مستحکم با چقرمگی شکست بالا هستند که مهمترین عناصر آلیاژی آنها نیکل، کبالت، مولیبدن، تیتانیم، تنگستن و آلومینیم بوده و میزان کربن و عناصر ناخالصی در آنها بسیار کم می باشد.
عبارت رسول سخت شونده از دو واژه مارتنزیت و پیرسازی گرفته شده است. این واژه به دلیل اینکه استحکام همراه با چقرمگی بالا در این فولادها از طریق پیرسازی ساختار مارتنزیتی کم کربن و تشکیل رسوبات بین فلزی در این ساختار حاصل می گردد، به این نوع فولاد اطلاق می شود. فولادهای رسوب سخت شونده به دلیل استحکام و چقرمگی شکست بسیار بالا، قابلیت جوشکاری عالی، عملیات حرارتی ساده و سهولت قطعه سازی، کاربردهای فراوانی در صنایع هوا فضا، نظامی، ابزارهای تولیدی و تهیه قالب ها و غیره دارند.
مهمترین ویژگی فولادهای رسوب سخت شونده، دارا بودن چقرمگی شکست خوب در استحکام های بالا است. وجود عناصر ناخالصی و گازهای مضر، تأثیر بسیار زیادی بر افت چقرمگی فولادهای رسوب سخت شونده دارند که متداول ترین و مضرترین عناصر از این دسته
شامل کربن، گوگرد، نیتروژن و اکسیژن می باشند. عناصر مذکور با تشکیل آخال های کاربیدی، سولفیدی، نیتریدی، یا ترکیبی از آنها سبب کاهش استحکام و چقرمگی فولاد می شوند. لذا حذف ناخالصی ها و گازهای ناخواسته در این فولادها بسیار حائز اهمیت می باشد. بهترین روش جهت حذف این عناصر استفاده از فرآیندهای ذوب و تصفیه در کوره های خلأ VIM و VAR می باشد. کوره VIM که به عنوان یک کوره ذوب تحت خلأ می باشد، با ایجاد خلأ در محدود 4-10 میلی بار، از دو طریق باعث حذف ناخالصی ها می شود:
الف – حذف گازها از طریق خارج نمودن مستقیم گاز از محیط ذوب توسط پمپ های خلأ انجام می شود.
ب – حذف گازها از طریق واکنش گازهای باقی مانده با عناصر ناخالصی و تولید گازهای CO2، SO2 و غیره و نهایتا خروج گازهای تولید شده توسط پمپ های خلأ، که از این طریق میزان گازهای باقی مانده و نیز کربن، گوگرد و سایر اکسیدها و ناخالصی ها کاهش می یابد.
همچنین کوره VAR که به عنوان یک کوره ذوب مجدد و تصفیه تحت خلأ محسوب می شود علاوه بر داشتن مزایای کوره VIM (از لحاظ ایجاد خلأ که باعث کاهش گازها و ناخالصی ها می شود)، به دلیل مکانیزم ذوب قطره ای و انجماد در قالب مسی آبگرد، باعث ایجاد ساختار همگن و جهت دار نیز می شود. لذا مجموع این دو فرآیند، یعنی تولید شمش از طریق کوره VIM و تصفیه آن توسط کوره VAR، باعث کاهش حداکثری گازهای فعال، اکسیدها و آخال ها و همچنین ایجاد ترکیب شیمیایی همگن، انجماد جهت دار و ساختار مناسب گشته، که این امر منجر به حصول خواص مکانیکی بالا می گردد.
محیط انتشاری که سیگنال از فرستنده تا گیرنده از آن می گذرد، کانال نامیده می شود. هرچه این محیط دقیق تر شناخته شود، بهتر می توان سیستم را طراحی کرد و در نتیجه به عملکرد مناسبتری رسید.
محیط انتشار سیستم های UWB معمولا محیط داخل ساختمان و شلوغ است و در نتیجه سیگنال ارسالی در این کانال مانند سایر کانال های بی سیم از مسیرهای مختلفی به گیرنده می رسد که بر این اساس با پدیده چند مسیری روبرو می شود. اگر یک تک پالس به کانال دارای فیدینگ وارد شود، قطاری از پالس از آن خارج خواهد شد که هرکدام یک مولفه چند مسیری است. اگر تأخیر زمانی بین مولفه ها از عکس پهنای باند کانال بزرگتر باشد، مولفه ها قابل تفکیک اند. پهنای باند وسیع سیستم های UWB به گیرنده این امکان را می دهد که مولفه های مختلف را از هم تفکیک کند.
یکی از پارامترهای مهم کانال دارای فیدینگ، مجموع تأخیر انتشار آن است که تعریف آن اختلاف بین اولین و آخرین پالس دریافتی از کانال در اثر تحریک تک پالس است. پاسخ ضربه کانال به طور تصادفی با زمان تغییر می کند. بنابراین تأخیر کانال هم متغیری تصادفی است. یکی
دیگر از پارامترهای توصیف کانال پروفایل توان تأخیر است. از روی این پروفایل پارامترهای کلیدی: تأخیر اضافی میانگین و گستره تأخیر موثر و “NP10dB” به دست می آید. مدل های مختلفی برای توصیف کانال سیستم های فوق باند وسیع پیشنهاد شده است که کمیته “IEEE 802.15.3a” پس از بررسی آنها و مقایسه با اندازه گیری های انجام شده در مولد این کانال، مدلی که اولین بار توسط “Saleh-Valenzuela” معرفی شده را پذیرفته است. مدل ارایه شده در این تحقیق مانند اکثر کارهای انجام شده در مقالات براساس همان تعریف مدل S-V از کانال سیستم های فوق باند وسیع با پاره ای از تغییرات است. در این تحقیق با تمرکز برای حالت LOS و در داخل ساختمان به دنبال آن هستیم تا هم دقت را بهبود بخشیم و هم برخی نقص های مدل S-V را کم اثر کنیم.
در فصل اول در مورد کانال سیستم های فوق باند وسیع و چند نمونه از کارهایی که در این مورد انجام شده است بحث می شود بعد از آن تعریف و ضرورت پروژه توضیح داده خواهد شد. در بخش اول از فصل دوم در مورد تئوری سیستم های فوق باند وسیع، شامل سیگنال دهی، طراحی موج با طیف خاص، روش های مدولاسیون بحث می شود و نیز اشاره ای به فرستنده، گیرنده، روش های دستیابی چندگانه و تداخل در این سیستم ها می شود. بخش دوم از این فصل به کانال سیستم های فوق باند وسیع اختصاص دارد. فصل سوم درباره شرایط اندازه گیری، شرح و شبیه سازی الگوریتم کلین برای استخراج پاسخ کانال از مقادیر اندازه گیری شده و تحقق مدل S-V است. در چهارمین فصل از مدل دو دسته ای و اصلاح آن و شبیه سازی های مربوط به آنها و مقایسه آنها با مدل S-V سخن می گوییم. سرانجام در آخرین فصل به نتیجه گیری و ارایه پیشنهادات می پردازیم. خاطرنشان می شود که تمام شبیه سازی ها در محیط “MATLAB” انجام شده است.
روش های شناسایی که بر مبنای تحقق بنا شده و به آن روش هندسی یا زیرفضا نیز می گویند، جزو روش هایی است که سیستم های خطی چندمتغییره را به شکل مدل فضای حالت با دقت مناسب و به طور سریع شناسایی می کند. مسئله شناسایی سیستم های MIMO یکی از مسائل مهم است که روش های شناسایی SISO جوابگوی آن نمی باشد یکی از دلایل اینست که به دست آوردن و پیش بینی یک ساختار پارامتریک برای این سیستم ها بسیار دشوار است. در اواسط دهه 1960 دو مقاله مهم یکی برای تخمین مدل ARMAX توسط AStrom و Bohlin و دیگری توسط Ho و Kalman برای حل مسئله تحقق فضای حالت ارائه گردید که آغازی برای طرح مسئله شناسایی سیستم ها و فرایندهایی بود که در صنعت با آن مواجهیم. می توان گفت روش های زیرفضا براساس ایده تئوری تحقق سیستم های قطعی و تصادفی تکیه دارد و توسط محققینی همچون Ho و Kalman (1966 و Van Overschee و De Moor (1996 – 1994 و Verhagen (1994 و Verhaegen و Dewilde (1992 و Viberg (1995 و Akaike (1975 – 1974 و Faurre (1976 و Picci (1976 و Lindquist و Picci (1979 – 1991 و بسیاری دیگر پایه گذاری شده و توسعه یافته است. این روش ها علاوه بر سیستم های خطی، سیستم های غیرخطی را نیز شناسایی می نمایند. در چند دهه اخیر تلاش هایی برای ارائه روش هایی جهت شناسایی سیستم های غیرخطی با استفاده از الگوریتم
زیرفضا انجام گرفته از جمله شناسایی مدل Wiener و Hammerstein، شناسایی مدل Hammerstein با استفاده از LS-SVM و شناسایی سیستم های دوسویه. در این پروژه الگوریتم جدیدی جهت شناسایی on-line سیستم های غیرخطی با مدل Hammerstein ارائه خواهد شد. مدل های Hammerstein از اتصال متوالی یک بلوک خطی و یک بلوک غیرخطی تشکیل می شود. برای شناسایی بلوک خطی از الگوریتم شناسایی زیرفضا با استفاده از آنالیز مولفه اصلی یا SIMPCA (Qin ,Wang و جهت شناسایی بلوک غیرخطی از روش نگاشت غیرخطی که یکسری توابع پایه شعاعی را جهت این نگاشت به کار می برد استفاده خواهیم کرد. به این دلیل از توابع پایه شعاعی استفاده می شود که نوشتن برنامه شبیه سازی با این تابع ساده تر است و همچنین امکان اعمال چند ورودی به طور همزمان برای آن وجود دارد. سپس با اعمال روش هایی سعی در اصلاح نگاشت یا بهینه سازی پارامترهای توابع پایه می نماییم. این روش ها شامل الگوریتم پالایش انتخابی، الگوریتم بهینه سازی شبه – نیوتن با کد BFGS و الگوریتم ژنتیک می باشد. هر سه روش بررسی و اجرا خواهند شد و مناسبترین آنها جهت شناسایی on-line به کار گرفته می شود. این پایان نامه در 6 فصل تنظیم شده است، فصل اول شامل شناسایی مقدماتی با مقوله شناسایی و اهداف پروژه می باشد، در فصل دوم وارد مبحث شناسایی زیرفضا شده و با ایده اصلی آن آشنا می شویم در فصل سوم چند روش مهم شناسایی زیرفضا تجزیه و تحلیل می شود و در فصل چهارم روشهای شناسایی مدل غیرخطی و به صورت off-line ارائه می شود. فصل پنجم نیز شامل شناسایی on-line مدل غیرخطی Hammerstein با استفاده از روش SIMPCA می باشد و در انتها نتیجه گیری و پیشنهادات لازم ارائه می گردد.
:
در این فصل در ابتدا توضیح مختصری راجع به خواص مدارات در حالت کلی بیان می کنیم. سپس اثرات غیرخطی بودن مدار مانند هارمونیک ها، فشردگی بهره، مدولاسیون متقابل و اینتر مدولاسیون مرتبه 2 و 3 را بررسی می کنیم. سپس توضیحاتی راجع به فرآیندهای تصادفی و به خصوص نویز ارائه می دهیم.
1-1- ویژگی های مهم مدار:
در این بخش به توضیح خواص و ویژگی های مدارات می پردازیم:
1-1-1 خاصیت خطی بودن:
اگر شرط زیر برقرار باشد یعنی مدار خطی است:
xr(t)->y1(t
x2(t)->y2(t
ax1(t)+Bx2(t)->ay1(t)+By2(t
در سیستم خطی ما می توانیم از قانون جمع آثار استفاده کنیم به عبارت دیگر خروجی به صورت ترکیب خطی از پاسخ سیستم به تک تک ورودی ها می باشد.
سیستم غیرخطی سیستمی است که شرط بالا را نداشته باشد یا به عبارت دیگر شرایط اولیه غیر صفر یا آفست محدود داشته باشد.
2-1-1- خاصیت تغییرپذیری با زمان:
اگر رابطه زیر برقرار باشد سیستم تغییر ناپذیر با زمان است در غیر این صورت متغیر با زمان است:
x(t)->y(t
x(t-z)->y(t-z
نکته: اگر مدار هر دو خاصیت بالا را داشته باشد LTI گفته می شود.
3-1-1- بدون حافظه بودن:
اگر خروجی سیستم در هر زمان به ورودی در همان زمان وابسته باشد سیستم را بدون حافظه گویند در غیر این صورت سیستم را با حافظه می نامند.
اگرچه خاصیت غیرخطی و متغیر با زمان بودن مفاهیم بدیهی هستند ولی باید در استفاده از این مفاهیم دقت کرد زیرا گاهی باهم اشتباه می شوند. برای تفهیم بهتر در اینجا یک مثال را بررسی می کنیم. شکل 2.1a را در نظر بگیرید. این شکل مدار ساده یک سوئیچ می باشد. vin1 کنترل کننده سوئیچ می باشد به این صورت که اگر مثبت بود سوئیچ وصل و اگر منفی بود سوئیچ قطع می باشد. اگر این مدار مانند شکل 2.1b در نظر گرفته شود (یعنی Vin1 به خروجی) سیستم غیرخطی متغیر با زمان می باشد زیرا از یک طرف به قطبیت Vin1 بستگی دارد پس غیرخطی است و از طرف دیگر چون خروجی به Vin2 نیز وابسته است، پس متغیر با زمان می باشد. حال اگر مدار را مطابق شکل 2.1C (یعنی Vin2 به خروجی) در نظر بگیریم، سیستم خطی متغیر با زمان است.
نکته بسیار مهمی که در پایان به آن اشاره می کنیم این است که سیستم خطی نیز می تواند مولفه های فرکانسی ایجاد کند که در ورودی نیست و این پدیده می تواند در اثر متغیر با زمان بودن ایجاد شود.
جهت ساخت سوئیچ فابریک های بزرگ ATM، از مجموعه روش های Clos و Crossbar، با استفاده مکرر از قطعات با بافرهای خروجی و تسهیم حافظه که به صورت m*m ساخته شده اند، استفاده می شود. به طور کلی، سوئیچ های ATM با ویژگی چند پخشی، دارای دو نوع فابریک اساسی هستند:
Crossbar , Clos. از مزیت های سوئیچ فابریک Crossbar، ابتدا می توان به ساختار ساده آن اشاره کرد که برای پیاده سازی بسیار آسان می باشد. دوم، ویژگی ذاتی چند پخش آنها می باشد. و سوم، اینکه این سوئیچ، به طور ذاتی دارای خاصیت عدم انسداد می باشد. (به عبارتی می توان گفت، که همواره بین هر پورت ورودی و خروجی یک مسیر قابل دسترس وجود دارد.)
سوئیچ های Clos، از دسته شبکه های تحت عنوان MINs می باشند، که فقط دارای چندین طبقه هستند.
شبکه های MINs، اتصال میان پورت های ورودی و خروجی را از طریق تعدادی طبقات دارای سوئیچ، برقرار می کنند. هدف از MINs، جلوگیری از پیچیدگی سخت افزاری شبکه های Crossbar (یک سوئیچ “N*N Crossbar” دارای N2 نقطه تقاطع می باشد). و نیز ایجاد توانایی عدم انسداد در هر زمان می باشد. دسته معروف MINs، شبکه های Clos هستند که اساس کار ما در این پایان نامه است.
باید گفت که در سوئیچ Clos، مکانیزم سریعی برای دستیابی به نطم دوباره اتصالات، مطابق با سلول های ورودی هر قطعه زمانی مورد نیاز است، تا بتوان از مسدودشدگی داخلی جلوگیری کرد.
این مسأله، وقتی که اندازه سوئیچ بزرگ باشد، ایجاد مشکل می کند. در عمل، ممانعت از مسدودشدگی داخلی، ساده نمی باشد. در واقع وقتی که رقابت سلول ها، روی پیوندهای داخلی روی دهد، کارایی سیستم کاهش می یابد.
این مسأله می تواند با افزایش تعداد پیوندهای داخلی بین واحدهای سوئیچ، بهبود یابد. به طوری که مسیرهای بیشتری برای مسیریابی سلول های اطلاعاتی وجود خواهد داشت.
افزایش پهنای باند پیوندهای داخلی نیز مفید است، که به جای داشتن یک سلول برای هر پیوند داخلی در قطعه زمانی، هم اکنون بیشتر از
یک سلول از واحد ورودی به واحد طبقه سوم مسیریابی می شود. از آنجا که بین هر زوج واحد ورودی و خروجی در شبکه Clos، به تعداد طبقات میانی، مسیر فیزیکی وجود دارد، لذا مدیریت تخصیص واحد میانی (واحدهای طبقه میانی) می تواند باعث توزیع یکنواخت ترافیک ورودی شود. با ارائه روش هایی که در آنها، تخصیص زمانی و نیز تخصیص مکانی صورت می گیرد، می توان پارامترهای کارایی را بهبود بخشید.
در این پایان نامه، هدف اصلی ما، طراحی یک الگوریتم جدید به منظور مسیریابی سلول های مکالمات درخواستی از سوئیچ، در طبقات سوئیچ می باشد به طوری که بتوان پارامترهای کارایی را بهبود بخشید. اصول کار در این پایان نامه به ترتیب زیر می باشد:
در فصل اول، هدف از کار و پیشینه ای از تحقیق و نیز روش کار و تحقیق به طور مختصر ارائه می گردد.
در فصل دوم، پایه ای از ATM و اساس سوئیچینگ در ATM مورد بحث و بررسی قرار می گیرد، در این فصل، مزایا و معایب مهم انواع سوئیچ های ATM مورد مطالعه قرار می گیرد.
مرجع اصلی این فصل، مرجع [1] می باشد.
در فصل سوم، سوئیچ های شبکه ای Clos که سوئیچ پیشنهادی در پایان نامه می باشد، مورد بحث و بررسی قرار می گیرد. مفاهیم این فصل، در درک مباحث بعدی، کمک زیادی می کند. مرجع [4]، یکی از مقالات IEEE، در زمینه سوئیچ Clos می باشد که از مراجع مهم اطلاعاتی این فصل بوده است. در فصل چهارم، اصول عملی کلی در زمینه سوئیچ های Clos، در قالب عنوان پایان نامه، که قبلا مورد تحقیق واقع شد، بررسی می گردد. مقالات IEEE زیادی در زمینه ATM و سوئیچ های Clos ارائه گردیده است. در این فصل، هدف، بررسی مقالات و تحقیقات قبلی می باشد که قبلا در راستای عنوان پایان نامه انجام شد. با مطالعه این مقالات، انواع روش های ساخت سوئیچ فابریک های بزرگ ATM و نیز روش هایی در زمینه مسیریابی بهینه مورد بررسی قرار می گیرد. از مراجع مطالعاتی این فصل، مقالات مربوط به مراجع [3]، [5]، [6] می باشند.
فصل پنجم، روش کار در پایان نامه را شرح می دهد که شامل ارائه یک الگوریتم جدید و شبیه سازی آن در محیط نرم افزار Matlab می باشد. شرح کامل الگوریتم و نتایج بدست آمده در این فصل آورده شده است.
فصل ششم نیز شامل نتیجه گیری، پیشنهادات و پیوست ها می باشند. ضمنا در این فصل فهرست کلی منابع و مأخذ نیز، آورده شده است.