وبلاگ

توضیح وبلاگ من

موضوع: "بدون موضوع"

الکترونیکشبکه های نوری (تحقیق و بررسی سوییچ های نوری)


در استفاده از مالتی پلکس تقسیم زمانی، نرخهای انتقالی که معمولاً استفاده می شوند 2/5، 10، 40 گیگابیت برثانیه اند. اما مدارات الکترونیکی که انتقال با چنین نرخ هایی را محقق می کنند ضمن پیچیدگی گران نیز هستند. به علاوه برخی مسائل تکنیکی نیز کاربرد این روش را محدود می کند به عنوان نمونه میزان تاثیر پاشندگی رنگی در نرخ بیت 10 گیگابیت برثانیه شانزده بار بیشتر از نرخ بیت 2/5 گیگابیت برثانیه است. همچنین مقادیر بزرگتر توان انتقال که برای نرخ بیت های بیشتر لازم است سبب بروز آثار غیر خطی می شوند که برکیفیت شکل سیگنال تاثیرمی گذارد. پاشندگی مد پلاریزاسیون نیزمسافتی را که نور قادر است بدون خراب شدن طی کند محدود میکند. بنابراین روش دیگر برای افزایش ظرفیت آن است که چندین کانال با طول موجهای مختلف را در کنار هم قرار داده به طور همزمان برروی یک فیبر منتقل کنیم. این روش که تحت عنوان مالتی پلکس تقسیم طول موج شناخته می شود ما را قادر خواهد ساخت که تعدادی زیادی کانالهای بانرخ بیت 2/5 تا 40 گیگابیت بر ثانیه را به یکباره به وسیله یک فیبر انتقال دهیم.
هدف ما در این متن آشنایی با قطعات مختلفی است که در این سیستمها استفاده می شوند. در این راستا ضمن آشنایی با اصول عملکرد هر قطعه مشخصات اصلی و نیز ساختارهای مختلف آنها را بیان می کنیم. این قطعات شامل لیزر، قفل کننده طول موج، مدولاتور، ترانسپوندر، اینترلیور، مالتی پلکسر / دی مالتی پلکسر، فیبر، کوپلر، تقویت کننده، ایزولاتور، سیرولاتور، سوییچ، تبدیل کننده طول موج، فیلتر، تضعیف کننده و آشکارساز هستند.
فصل اول:
1-1) فیبر نوری

فیبر نوری عمل هدایت امواج نور را باحداقل تضعیف انجام می دهد. فیبر نوری شامل هسته ای شیشه ای است که به طور کامل به وسیله یک پوشش شیشه ای با ضریب شکست کمتر احاطه شده است. شیشه ها با عناصر آلاینده مشخصی مخلوط می شوند و به این ترتیب است

پروژه دانشگاهی

 که ضرایب شکست آنها تنظیم می شود. فیبر شیشه ای قابلیت انتقال نور را با سرعتی حدود دو سوم آن درخلا را داراست. انتقال نور در فیبر نوری براساس اصل بازتابش کلی داخلی صورت می گیرد. بسته به زاویه تابش نور به فصل مشترک دو ماده با ضرایب شکست مختلف مقداری از نور منعکس می شود و بقیه در عبور به محیط دوم شکست می یابد.

بازتابش کلی وقتی صورت میگیرد که پرتوها از ماده ای باضریب شکست بیشتر به ماده ای با ضریب شکست کمتر تابیده شوند و زاویه تابش بیشتر از زاویه بحرانی باشد. زاویه بحرانی زاویه تابشی است که به ازای آن زاویه شکست نور در محیط دوم 90 درجه است. هسته نسبت به پوشش ضریب شکست بزرگتری دارد ولذا پرتوهایی که با زاویه بیشتر از زاویه بحرانی به فصل مشترک برخورد می کنند انعکاس می یابند. چنانچه پرتویی چنین شرطی را برآورده نکند، شکست می یابد با کنترل زاویه ای که نور به داخل فیبر تابانده می شود شرط زاویه بحرانی برآورده می شود.
2-1) فیبر چند مد و تک مد
فیبرهای نوری به دوگروه چند مد و تک مد تقسیم می شوند. فیبرهای چند مد شامل دو دسته فیبرهای با ضریب شکست پله ای و فیبرهای با ضریب شکست تدریجی هستند. در فیبر با ضریب شکست پله ای مقدار ضریب شکست در کل هسته، یکنواخت است و در مرز هسته و غلاف به طور ناگهانی تغییر می کند. توجه به این نکته حائز اهمیت است که دو مد باید مسافتهای مختلفی را برای رسیدن به انتهای فیبر طی کنند. اختلاف زمان رسیدن پرتوهای نور به انتهای فیبر تحت عنوان پاشندگی مدی شناخته می شود و با افزایش مسافت انتشار افزایش می یابد. این پدیده موجب کیفیت نامطلوب سیگنال درگیرنده شده و در نهایت مسافت انتقال را محدود می کند. همین مساله دلیل عدم استفاده از فیبرهای چند مد در فواصل طولانی است.
به منظور جبران ویژگی نامطلوب فیبر چند مد با ضریب شکست پله ای فیبرهای باضریب شکست تدریجی ساخته شدند. در این فیبرها ضریب شکسته هسته به طور تدریجی ازمرکز هسته به سمت بیرون کاهش می یابد و لذا نوری که در نزدیکی مرکز هسته منتشر می شود ضریب شکست بزرگتری را نسبت به نوری که دورتر از مرکز حرکت می کند می بیند. به این ترتیب نوری که مسیر کوتاهتری را می پیماید آهسته تر از نور طی کننده مسیر طولانی تر حرکت میکند و همه پرتوها در مدت زمانی تقریباً یکسان به مقصد رسیده پاشندگی مدی کاهش می یابد. پس نور در فیبر با ضریب شکست تدریجی مسیری منحنی شکل را طی می کند.
گروه دوم فیبرهای نوری یعنی فیبرهای تک مد دارای قطر هسته به مراتب کوچکتر از فیبرهای چند مد هستند و فقط یک مد نوری در داخل هسته منتشرمی شود. بنابراین کیفیت سیگنال به نحو بهتری در طی مسافات طولانی حفظ میشود و پاشندگی مدی به طور قابل توجهی کاهش می یابد. این عوامل منجر به ظرفیت پهنای باند بیشتر نسبت به فیبرها چند مد به دلیل ظرفیت زیاد حمل اطلاعات و تلفات ذاتی کم، برای کاربردهای با مسافات طولانی و پهنای باند زیاد نظیر WDM ارجمند.
انتقال نور در فیبرهای نوری با چندین چالش همراه است که باید مدنظر قرارداده شوند. این چالشها عبارتند از تضعیف یا به عبارتی کاهش شدت سیگنال یا تلفات توان نوری در حین انتشار در فیبر، پاشندگی یاپهن شدگی پالسهای نوری در طی حرکت آنها در طول فیبر، آثار غیرخطی یا آثار انباشته شونده ناشی از برهم کنش نور باماده ای که نور د رآن منتشر می شود که نتیجه اش تغییرات امواج نوری و بر هم کنش بین آنهاست.

محفظه محافظ آنتن رادار

:
پوشش های گنبدی شكل آنتن رادار، آنتن ها را در معرض عوامل محیطی حفاظت می كنند. این پوششها با در نظر گرفتن مشخصه های آیرودینامیك، حرارتی و ساختمانی می بایست یك واسطه مناسب برای بدست آوردن عملكرد الكتریكی مورد نیاز باشند. به عبارت دیگر در حالت ایده آل radome ها ضمن آنكه بایست تمام نیازها را تامین نمایند نباید مشخصات عملكرد الكتریكی آنتن را كاهش دهند. مواردی كه در مشخصات الكتریكی كاركرد یك محفظه مورد توجه هستند عبارتند از: میزان شكست پرتو، انحراف پترن تلف انتقال و قدرت انعكاس یافته بدلیل حضور radome.
یک radome در معرض فشارهای حرارتی و بارهای هوائی محیط اطرافش قرار می گیرد. فاكتورهائی نظیر باران، یخ، برف، تگرگ و ارتعاش بر ساختار و عملكرد الكتریكی محفظه تاثیرگذارند.
Radome ها در دو دسته عمومی تقسیم بندی می شوند. محفظه های هوائی و محفظه های زمینی و دریائی. سطح مقطع محفظه ها نیز بدین صورت طبقه بندی می شوند: تك لایه های یكنواخت A,B,C sandwich، دی الكتریك های فلزاندود شده و سازه های فضائی.
آنچه در پی خواهد آمد بررسی انواع محفظه ها و سطح مقاطع موجود و عوامل و شرائط الكتریكی و محیطی در كاهش یا بهینه سازی عملكرد آنتن رادار است تا با وجود آنها كارآئی آنتن رادار تحت تاثیر قرار نگیرد.

فصل اول: آشنائی با Radome

 

پروژه دانشگاهی

 

1-1- تعریف Radome و عملکرد آن
پوشش های گنبدی شكل آنتن رادار، آنتن ها را از معرض عوامل محیطی حفاظت می كنند. علاوه بر این با در نظر گرفتن مشخصه های آیرودینامیك، حرارتی و ساختمانی radome یك واسطه مناسب برای بدست آوردن عملكرد الكتریكی مورد نیاز می باشد. در حالت ایده آل radome ضمن آنكه تمام نیازها را تامین می نماید نباید مشخصات عملكرد الكتریكی آنتن را كاهش دهد. در عمل، عملكرد الكتریكی radome نمی تواند حداكثر باشد چرا كه باید حداقل نیازهای سایر موارد نیز برآورده شود.
ملاحظات الكتریكی
معمولا مشخصات الكتریكی كاركرد یك radome براساس موارد زیر محاسبه می گردد:
– میزان شكست پرتو
– انحراف پترن
– تلف انتقال
– قدرت منعكس شده كه بدلیل حضور radome ایجاد می شود.
در كاربردهای اصلی، اثرات افزایش نویز حرارتی سیستم و عدم پلاریزاسیون نیز مهم می باشند. انتقال محور الكتریكی لوپ اصلی بدلیل حضور radome، انحراف پرتو یا خطاهای دهانه دید boresight را پدید می آورد. انحراف پرتو در چاوش مخروطی و آنتهاس منوپالس، از انتقال نقطه Crossover به موقعیت مشابه آن در عدم حضور radome پدید می آید.
افت انتقال برابر با میزان انرژی از دست داده شده بدلیل انعكاس و جذب می باشد. در برخی موارد تغییرات فاز بوسیله radome كه به افت گین آنتن كمك می كند، مطرح می گردد. اثر اولیه افت انتقال، كاهش حداكثر برد مفید رادار است.
با ملاحظه معادله برد رادار مشخص می گردد حداكثر برد برای آشكار نمودن یك هدف مشخص، به طور مستقیم متناسب با ریشه مجذور ضریب انتقال قدرت radome می باشد. بنابراین اگر ضریب انتقال قدرت radome، 85 درصد باشد، حداكثر برد آشكار سازی 92 درصد مقدار آن در نبود radome خواهد بود.
امكان دارد انحراف پترن كه بوسیله radome پدید می آید، تغییراتی را در پهنای پرتو بیم اصلی كاهش عمق نقاط صفر (null depths) و افزایش ساختار لوپ جانبی پدید آورد.
برای آنتن های منوپالس، نولهای محور دید دهانه boresight به طور ناتمام تكمیل خواهد شد. اگر قدرت منعكس شده توسط radome بیش از ندازه باشد، ممكن است تغییر فركانس ماگنترون پدید آید و همچنین ممكن است باعث تنزل پترن ها با شكل مخصوص پرتو و افزایش سطوح لوپ جانبی گردد. در كاربردهای اصلی نظیر آنتن های نوع دوپلر cw حتی مقادیر كم قدرت برگشتی (منعكس شده) به آنتن موجب مشكلاتی خواهد شد. انرژی جذب شده توسط radome بر مشخصات انتقال آن تاثیر می گذارد. ضمن آنكه توان جذب شده نویز حرارتی سیستم را افزایش داده و اگر معیاری با اهمیت است باید مورد ملاحظه قرار گیرد.
وقتی كه رادار سطوح دارای توان بالا را منتقل می كند، ممكن است انرژی جذب شده توسط radome، حرارت دیواره آن را تا حدی افزایش دهد كه مشخصات ساختاری آن به طور جدی تنزل پیدا كند.

کاربرد شبکه های عصبی در پنهان شکنی تصاویر

:

امروزه مبحث امنیت انتقال اطلاعات، از مسائل مهم در تبادل اطلاعات محرمانه است. در این راستا روش های رمزنگاری و پنهان نگاری و همچنین شیوه های نفوذ مختلف به طور گسترده توجه پژوهشگران را جلب نموده است. اگرچه استفاده از روشهای رمزنگاری توانسته تا حدی جوابگوی نیازها در زمینهی امنیت اطلاعات باشد ولی وضوح این ارتباط زمینه ساز مشکلات دیگری است. هدف پنهان نگاری، مخفی کردن پیام به گونه ای است که حتی وجود پیام نیز محسوس نبوده و تشخیص وجود آن خود مستلزم بکارگیری روشهای علمی میباشد.

 

دانلود مقالات

 

در این سمینار به روشهای گوناگون پنهان نگاری و پنهان شکنی تصاویر میپردازیم. پس از بررسی ویژگیهای سیستمهای نهان نگاری و طراحی با توجه به ویژگیهای مورد نظر در فصل اول، در فصل دوم به روش های نخستین استگانوگرافی تصویر از جمله LSB و چند روش نوین استگانوگرافی اشاره شده است. فصل سوم به معرفی و مقایسۀ روشهای نهان نگاری در حوزه های مختلف تبدیل از جمله DCT، Contourlet و Wavelet و… پرداخته و در نهایت در فصل چهارم پنهان شکنی با شبکه های عصبی مصنوعی به اختصار بیان شده است.
فصل اول
مبانی و کاربردهای پنهان نگاری
1-1- پنهان نگاری
Steganography متشکل از دو کلمه یونانی stego به معنای مخفی و graphos به معنای نوشته که با هم معنی نوشته ی مخفی را تداعی می کنند. در واقع پنهان نگاری یا استگانوگرافی هنر برقراری ارتباط پنهانی است و هدف آن پنهان کردن ارتباط به وسیله قرار دادن پیام در یک رسانه پوششی است، به گونه ای که امکان استخراج نبوده و نتوان موجودیت پیام پنهان در رسانه را آشکار ساخت. اطلاعات یا پیام محرمانه ممکن است تصویر، متن، صدا و یا هر داده دیجیتالی دیگر باشد. به اطلاعات میزبان که داده محرمانه در آن مخفی می شود، اطلاعات پوشش گفته می شود. اگر اطلاعات پوشش تصویر باشد به آن تصویر پوششی یا میزبان گفته می شود و به تصویر حاصل از استگانوگرافی، تصویر استگو گفته می شود.

بررسی تاثیر اتوماسیون شبکه توزیع بر بهبود قابلیت اطمینان

متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی برق قدرت

 

 

با عنوان : بررسی تاثیر اتوماسیون شبکه توزیع بر بهبود قابلیت اطمینان

 

 

در ادامه مطلب می توانید تکه هایی از ابتدای این پایان نامه را بخوانید

 

 

و در صورت نیاز به متن کامل آن می توانید از لینک پرداخت و دانلود آنی برای خرید این پایان نامه اقدام نمائید.

 

 

 

 

دانشگاه آزاد اسلامی

 

 

واحد تهران جنوب

 

 

دانشكده تحصیلات تكمیلی

پروژه دانشگاهی

 

 

 

“M.Sc” سمینار برای دریافت درجه كارشناسی ارشد

 

 

مهندسی برق – قدرت

 

 

عنوان:

 

 

بررسی تاثیر اتوماسیون شبكه توزیع بر بهبود قابلیت اطمینان

 

 

برای رعایت حریم خصوصی اسامی استاد راهنما،استاد مشاور و نگارنده درج نمی شود

طراحی کنترل کننده های هوشمند PIDبرای سیستم چند متغیره غیرخطی


كنترل كننده PID رایج ترین كنترل كننده در فرآیند های صنعتی می باشد. این كنترل كننده به دلیل مقاوم بودن در محدوده وسیعی از شرایط كاری و كارایی نسبتا بالا ، نسبت به سایر كنترل كننده ها، بیشتر مورد استفاده قرار می گیرد. دلیل دیگر این مساله، سادگی عملكرد و قابل فهم بودن آن می باشد. مشكل اصلی این گونه كنترل كننده ها، چگونگی یافتن مقدار بهینه ای برای بهره های تناسبی، انتگرالی و مشتقی است به گونه ای كه پاسخ حلقه بسته سیستم، مشخصه های مناسبی داشته باشد.

اغلب فرآیندهای صنعتی، سیستم چند متغیره می باشند. در این سیستم ها ورودی های مختلف بر روی خروجی های مختلف تاثیر می گذارند. بیشتر تحقیقات به موضوع تنظیم پارامترهای كنترل كننده PID، در سیستمهای یك ورودی – یك خروجی می پردازند و در زمینه سیستم های چند متغیره كارهای كمتری انجام شده است. در سیستم های چند متغیره تداخل بین كانال های مختلف، مشكلاتی را برای

پایان نامه های دانشگاهی

 عمل كنترل ایجاد می كند. به علاوه اگر چه روشهای مختلفی برای تنظیم كنترل كننده های PID ارائه شده است، اما در بیشتر آنها فرضیاتی مانند خطی بودن فرآیند، در نظر گرفته می شود. اگر فرآ یند خطی بوده و مدل ریاضی ساده ای برای آن وجود داشته باشد، شاید بتوان روشی تحلیلی برای تنظیم كنترل كننده یافت، اما در دنیای واقعی، فرآیندها غیرخطی و بسیار پیچیده می باشند و مدل های بدست آمده از آنها برای استفاده در روشهای تحلیلی مناسب نیستند. از این رو طراحی كنترل كننده PID برای سیستم های چند متغیره غیرخطی، میتواند فواید زیادی در مسائل تئوری و كاربردهای صنعتی داشته باشد.

روشی كه در این پایان نامه برای طراحی كنترل كننده PID به كار میگیریم، استفاده از سیستم های خبره مبتنی بر قوانین خواهد بود. اینگونه روشها یك مدل واضح از سیستم را، مورد استفاده قرار نمی دهند و به جای آن تنظیم پارامترها بر اساس ایده تنظیم دستی یك مهندس با تجربه انجام می شود. در روشی كه به كار خواهیم برد، ابتدا پاسخ سیستم حلقه بسته با كنترل كننده PID، را به ازای یك دسته پارامتر اولیه می یابیم. سپس با توجه به شكل بدست آمده، آن را در یكی از چند الگوی تعریف شده برای پاسخ، دسته بندی می كنیم و مشخصه هایی از پاسخ مانند زمان صعود، مقدار فراجهش و… را تعیین می كنیم. حال اگر پاسخ بدست آمده ملزومات طراحی را برآورده نكند، با به كار بردن یكی از قوانین موجود در پایگاه قوانین، مقدار پارامترهای كنترل كننده را تغییر داده و دوباره پاسخ سیستم حلقه بسته را بدست می آوریم. اگر به پاسخ مورد نظر دست نیافته باشیم، مراحل فوق را تا زمانی تكرار خواهیم كرد كه به پاسخ قابل قبول برسیم. انتخاب اینكه در هر مرحله چه قانونی را به كار ببریم با توجه به نوع پاسخ جاری و مقدار مشخصه های آن، تعیین میگردد.

 
مداحی های محرم